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Abstract
Very recently, an exponential probability distribution with parameter has been
used to calculate the decoherence factors for quantum states. We derive all
moments of this distribution systematically in three different ways, presenting
the results in terms of binomial coefficients or Pochhammer symbols, and
Stirling numbers of the first and second kinds. We show how generalized
harmonic numbers or polygamma functions provide another representation for
the moments. Extensions of the approach are briefly mentioned.
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1. Introduction

Very recently, the integral

d̄p =
∫ ∞

0
dpp(d) dd = 2(DE − 1)

∫ ∞

0
dp e−2d(1 − e−2d)DE−2 dd, (1)

for p = 1 and 2, was used to approximately calculate the decoherence factors for DE -
dimensional quantum states ([4], appendix D). The mean d̄ and the standard deviation �d

were determined for a single subenvironment and then, using a biased random walk model, the
results were extended to a collection of m subsystems by putting d̄m = md̄ and �dm = √

m�d.
For an environment made up of qubits (quantum bits), DE = 2, the probability distribution
p(d) is a first order Poisson distribution, and pm(d) is the mth order Poisson distribution [3]
(more precisely, an Erlang distribution). In effect, the authors of [4] appeal to the central
limit theorem in applying their random walk model. This approximation may be avoided
by calculating the exact probability distribution function for a sum of independent random
variables drawn from the distribution p(d). Very recently, we found a Fourier inversion
representation of this distribution, and it provides a formal integral representation of the mean
value d̄m and other moments [9].

Our calculation of all the moments of the quantum probability distribution p(d) is
related more broadly to the subject of the transition between classical and quantum physics.
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A paradigm for understanding decoherence uses the idea that environments decohere a system
by measuring it, and that in measuring the system the environments come to have information
about the system [3, 4]. The measure used by Blume-Kohout and Zurek [4] as to how much
information an environment E has about the system S is the quantum mutual information
(QMI). The QMI is the amount of entropy produced by destroying correlations between S and
E : ISE ≡ H(S) + H(E) − H(SE), where the Von Neumann entropy H = −Tr(ρ log ρ), and
ρ is the density matrix. The QMI has useful mathematical properties that make it convenient
to employ in calculations.

Initially for their discussion Blume-Kohout and Zurek let the universe be an (N + 1)-qubit
Hilbert space H = HS ⊗ ⊗N

i=1HEi
, where both HS and all the HEi

are single qubits (spin-1/2
particles). They then extend to environments of general dimension DE , with again DE = 2
being the qubit case. Among the tools they use is a formula conjectured (by Page, and later
proved by others [20, 21]) for the mean entropy H(m, n) of an m-dimensional subsystem of an
mn-dimensional system. When it comes to approximately calculating the decoherence factors
for DE -dimensional quantum states, the first and second moments of the distribution p(d) are
required. The moments of interest take the form of equation (1), with the initial p = 0, 1, and
2 cases having been done before [19].

In this paper, we calculate the moment integral (1) in multiple fashion for general p.
We encounter an interesting combination of special functions and special numbers, including
the Stirling and generalized harmonic numbers, and the polygamma functions. We describe
the connections of the moments d̄p to sums of generalized harmonic numbers from different
perspectives, and describe ready extensions of our results. Our work permits other statistics of
the distribution p(d) to be easily determined, as well as the asymptotic form of the moments
or other quantities.

2. Evaluation of equation (1) in terms of special numbers

We will conveniently restrict p in equation (1) to be a nonnegative integer, but much of what
we do does not require this condition. Of course, the case p = 0 is just the normalization of
the distribution p(d). Similarly, we take DE � 2 to be an integer. As a first, benchmark result
we have

Proposition 1.

d̄p = (DE − 1)
�(p + 1)

2p

DE−2∑
k=0

(−1)k
(

DE − 2

k

)
1

(k + 1)p+1
(2a)

= (DE − 1)
�(p + 1)

2p

DE−2∑
k=0

(−1)k

k!

1

(k + 1)p+1

k∑
�=0

s(k, �)(DE − 2)�, (2b)

where s(n,m) are Stirling numbers of the first kind [1, 6, 12, 16, 22].

Equation (2a) follows by straightforwardly binomially expanding the right-most factor in
the integrand of equation (1). This was the method of [4] and those results are recovered when
p = 0, 1, or 2. The cases of p = 0, 1, and 2 were also treated in [19] by means of a binomial
expansion. In addition, those authors developed recursion relations based upon integration by
parts. For equation (2b) we note that

(
x

n

) = (−1)n(−x)n/n!, where (a)n = �(a + n)/�(a) is
the Pochhammer symbol and � is the Gamma function, and use

(z)n =
n∏

k=1

(z + k − 1) =
n∑

k=0

(−1)n−ks(n, k)zk. (3)



One integral in three ways: moments of a quantum distribution 1427

An alternative route to equation (2a) is afforded by writing equation (1) as

d̄p = 2DE−1(DE − 1)

∫ ∞

0
dp e−DEd sinhDE−2 d dd, (4)

and then using a tabulated integral [15]. Yet again, depending upon whether DE is an even
or odd integer, one may expand sinh2n x or sinh2n−1 x in equation (4) as a binomial series
in cosh or sinh functions [15]. Then the application of other known integrals [15] returns
equation (2a).

Instead, we may apply the exponential generating functions of the Stirling numbers of the
first and second kinds, giving a series of expressions. We have

Proposition 2.

d̄p = (DE − 2)!

2p

∞∑
n=DE−2

S(n,DE − 2)

n!

�(p + n + 1)

(DE − 1)p+n
, (5)

where S(n,m) are Stirling numbers of the second kind [1, 6, 12, 16, 22], and

Proposition 3.

(a)

d̄p =
(

−1

2

)p

(DE − 1)p!
∞∑

n=p

s(n, p)
(−1)n

n!

1

(n + DE − 1)
, (6a)

(b)

d̄p = p

2p

∞∑
n=p

w(n, p − 1)
1

n

(DE − 1)

(n + DE − 1)
, (6b)

where [2]

w(x,m) = 1

�(x)
lim

q→x−1

(
d

dx

)m

(x − q)q. (7)

The quantities w(n,m) are essentially sums of generalized harmonic numbers and are
further described below.

For the proof of equation (5) we simply write equation (1) as

d̄p = 2(DE − 1)

∫ ∞

0
dp e−2d(DE−1)(e2d − 1)DE−2 dd, (8)

use the generating function of S(�, n) [1, 6, 12, 16], and carry out the resulting integration in
terms of the Gamma function.

Remark 1. (i) The use of the closed form [1, 6]

S(n,m) = 1

m!

m∑
k=0

(−1)m−k

(
m

k

)
kn (9)

returns proposition 1. This is done by inserting equation (9) into equation (5), interchanging the
two sums, and applying the binomial expansion. (ii) The Stirling numbers of the second kind
are connected with the Poisson distribution in the following way. If X is a random variable with
Poisson distribution with mean λ, then its jth moment is given by E(Xj ) = ∑j

k=1 S(j, k)λk .
Given this fact, the appearance of the numbers S(n, k) in some way in the moments d̄p could
be anticipated.
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In order to obtain equation (6a), we first make a change of variable in equation (1) so that

d̄p =
(

−1

2

)p

(DE − 1)

∫ 1

0
lnp(1 − v)vDE−1 dv. (10)

We then use the generating function of s(n,m) [1, 6, 12, 16] and evaluate the resulting
elementary integral. In order to obtain equation (6b) we use in equation (6a) the relation [2][ n

m
]

= (n − 1)!

(m − 1)!
w(n,m − 1) = (−1)n−ms(n,m). (11)

The numbers w(n,m) may be found recursively in terms of the generalized harmonic
numbers [10]

H(r)
n =

n∑
k=1

1

kr
= (−1)r−1

(r − 1)!
[ψ(r−1)(n + 1) − ψ(r−1)(1)], (12)

where ψ(j) is the polygamma function, as w(n, 0) = 1 and

w(n,m) =
m−1∑
k=0

(1 − m)kH
(k+1)
n−1 w(n,m − 1 − k), (13)

or written in terms of an m-fold multiple sum [2]. The recursion (13) of Adamchik [2] is
equivalent to one for s(n, k) found by Shen [24], (k − 1)s(n, k) = −∑k−1

m=1 s(n, k − m)H
(m)
n−1.

The w’s are also given by [2]

w(n,m) = 1

(n − 1)!

n∑
i=m+1

s(n, i)(i − m)mni−m−1. (14)

In terms of the Stirling polynomials σn(x) [16] we have [2] σn(m) = w(m,m − n − 1)/m.
Asymptotic forms of the Stirling numbers and polynomials are known [7, 8, 17, 18, 25],

so that equation (11) gives asymptotic forms of the numbers w(n,m). As examples, we apply
two results of [17]. Put r = (m − 1)/ ln n, let 2 � m � η ln n for η > 0, and let µ be a fixed
positive integer such that 2 � µ � m. Let g(w) = 1/�(w + 1) and Lα

n denote the associated
Laguerre polynomial. Then theorem 2 of [17] with error term Zµ gives

w(n,m − 1) = (−1)n−m lnm−1 n

[
1

�(1 + r)
+

µ∑
k=2

g(k)(r)

lnk n
Lm−k−1

k (m − 1) + Zµ(m, n)

]
,

n → ∞, (15)

uniformly in m. The asymptotic form may be obtained alternatively, putting q = [m − 1 +√
m − 1]/ ln n, and then by remark 1 of [17] we have

w(n,m − 1) = (−1)n−m lnm−1 n

[
1

�(1 + q)
+

ψ(1 + q)

�(1 + q)

√
m − 1

ln n

+ O

(
K3

(m − 1)3/2

ln3 n
e−√

m +
lnm n

nm!

)]
, n → ∞, (16)

where K3 is a constant.

3. Special case of the mean, p = 1

In order to further elucidate some of the underlying relations, we consider here in detail
the special case for d̄ = [ψ(DE) + γ ]/2, where γ = −ψ(1) is the Euler constant. Since
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w(n, 0) = 1, equation (6b) immediately gives this result due to the partial fraction form of the
digamma function [1]:

2d̄ =
∞∑

n=1

1

n

DE − 1

(n + DE − 1)
. (17)

Similarly, since s(n, 1) = (−1)n−1(n − 1)!, equation (6a) returns the result for the same
reason.

From equation (2a) when p = 1 we have

2d̄ =
DE−2∑
k=0

(−1)k

(k + 1)

(DE − 1)!

(k + 1)!(DE − k − 2)!
=

DE−2∑
k=0

(−1)k

(k + 1)

(
DE − 1

k + 1

)
= ψ(DE) + γ. (18)

The last relation may be obtained in various ways. From [2]

ψ(t + 1) + γ = −
∞∑

k=1

(−t)k

kk!
, (19)

by using (−t)k = (−1)kk!
(
t

k

)
, we have

ψ(t + 1) + γ =
∞∑

k=0

(−1)k

(k + 1)

(
t

k + 1

)
, (20)

recovering the Newtonian series for the digamma function [13]. When t is a positive integer
in this series, it truncates at k = t , due to a property of the binomial coefficients. Yet another
form of 2d̄ results from

ψ(t + 1) + γ = −
∞∑

p=1

(−1)pζ(p + 1)tp, (21)

where ζ is the Riemann zeta function. Together with [2, 5]

ζ(p + 1) =
∞∑

k=1

(−1)k−p s(k, p)

kk!
, (22)

we obtain other equivalences with equations (2), (18), (19), or (20). Equation (21) follows
immediately by inserting an integral representation for the zeta function, interchanging
summation and integration, and applying a standard integral form of the digamma function
[1]:

∞∑
p=1

tpζ(p + 1) = −
∫ ∞

0

[e−x − e−(1−t)x]

(1 − e−x)
dx = −ψ(1 − t) − γ. (23)

Various identities for special numbers can be developed by equating our different
expressions for the moments of p(d) or related quantities, but we hardly pursue this here.
As a very simple example, we have from equation (4) at p = 1

d̄ = (DE − 2)!

2

∞∑
n=DE−2

(n + 1)
S(n,DE − 2)

(DE − 1)n+1
= 1

2
[ψ(DE) + γ ]. (24)

Surely this identity is not new, but we have yet to find it in the literature. Presumably
equation (24) is independently verifiable by substituting an integral representation for the
Stirling numbers of the second kind.
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4. Extensions

We just briefly mention extensions of our work to other integrals. For instance, we find that

1

2DE

∫ ∞

0
dp e−2(DE−1)d (e2d − 1)DE−2

dDE−2
dd = 1

2p+1

1

(DE − 1)p+1

∞∑
n=0

�(p + n + 1)

(m + 1)n

S(n + m, n)

(DE − 1)n
.

(25)

Rather than simply apply equation (5), we have proceeded in a different manner by first
performing a shift of index in the series corresponding to the exponential generating function
for the Stirling numbers of the second kind, giving a series expansion in powers of x of the
function (ex − 1)m/xm. Alternatively, the integral of equation (25) could be evaluated by
means of a binomial expansion, or by a change of variable and introduction of the Stirling
numbers of the first kind.

Finally, we note that our propositions enable the explicit determination of integrals of the
form(

∂

∂p

)j (
∂

∂DE

)m ∫ ∞

0
dpp(d) dd = 2(DE − 1)

×
∫ ∞

0
dp lnj d e−2d(1 − e−2d)DE−1 lnm(1 − e−2d) dd. (26)

In this case, we treat p and DE as continuous parameters and perform logarithmic
differentiation. In particular, such results for m = 1 are expected to have relevance in the
calculation of quantum and semiclassical entropies and quantum mutual information [3, 4, 11].
For instance, the differential entropy of position is given by [11] S(x) = −∫

P(x) ln P(x) dx.
In the classical or semiclassical cases, P(x) is the probability distribution in space and the
integral is taken between the turning points of the motion, while quantum mechanically
P(x) = |ψ(x)|2, where ψ is the wavefunction and the integral is taken over all space.
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